植物学(英语:Botany)是一门研究植物形态解剖、生长发育、生理生态、系统进化、分类以及与人类的关系的综合性科学,是生物学的分支学科。传统上的植物学也包括真菌和藻类的研究,如今这两类研究被细分为了真菌学与藻类学,但国际植物学大会仍将它们包括在讨论范围内。如今,植物学家研究了大约410,000种陆生植物,其中391,000属于维管植物(其中包含369,000种被子植物),剩余的约20,000种为苔藓植物。
植物学起源于史前时代,人类在寻找药草的过程中逐渐鉴别出一些植物物种。而后人类也试图人工繁育特定植物,以供食用、提取毒素或医治疾病。这些努力也成为了人类科学研究的起始。欧洲中世纪僧院里的药材园常会种植一些具备药用价值的植物。这些园林后续逐渐演变为大学附属的植物园,其为植物研究提供了便利。最早出现的植物园是位于意大利的帕多瓦植物园。早期对植物的分类与描述为后续植物分类学奠定了基础,并促使卡尔·林奈提出了二名法,如今二名法已被广泛使用于生物命名。19和20世纪出现了许多新的植物研究技术,例如光学显微镜、活体细胞成像、电子显微镜、染色体倍性分析、植物化学,以及酶与其它蛋白质的研究。20世纪末,植物学家还发展了分子遗传分析技术,也即依靠基因組學、蛋白质组学、核酸序列等研究,更精确的分类植物。
现代植物学的研究范围广泛,常可从其它学科中汲取发展成果与全新见解。植物学的主要研究方向包括:植物组织的结构及其生长分化,植物的繁殖、生长、生物化学、代谢、化学产物、疾病、演化关系、系统分类以及植物分类。进入21世纪后,植物学研究还加入了表观遗传学与分子遗传学,这两门学科主要关注植物细胞组织分化过程中基因表达的机制与控制方式。植物学研究应用广泛,它有助于更稳定的产出主食、原料(例如木材、油、橡胶、纤维、药物),在现代园艺和农林业中帮助植物繁殖、配种、基因修改,能源或建筑材料合成,在环境管理领域促进生物多样性。
历史
人类对植物的认识最早可追溯到旧石器时代,史前人类在寻找食物的过程中采集了植物的根、茎、叶和果实。植物学的创始人是古希腊科学家泰奧弗拉斯托斯,他在著作《植物史》中描述了植物构造,并对其作了分类。公元1世纪希腊医师迪奥科里斯的著作《药物论》为日后药用植物的使用奠定了基础。1593年明朝医学家李时珍完成了《本草纲目》的编写,此书集成了中国16世纪以前本草学大成。17世纪末,英国生物学家约翰·雷确立了现代植物分类的基本原理。17世纪出现了各式各样的显微镜,开创了植物解剖学的研究,随后植物生理学和植物胚胎学也得到进一步发展,到19世纪中期,植物学各分支学科已基本形成。近代中国的植物学主要从西方引入,首部译本是数学家李善兰与外人于19世纪中叶合译的《植物学》,该书所译的细胞、心皮、子房、胎座、胚、胚乳等名词沿用至今。中国近代植物分类学的奠基人是胡先骕,他编写了中国首部植物学教材《高等植物学》,发现并命名了水杉。
早期植物学
植物学起源于人类对草药的研究与使用。人类早期文明有许多关于植物分类和描述的著作。例如可追溯至1100年前的古印度著作,古埃及的阿維斯陀語文本,中国的植物学早期著作可追溯到公元前221年。秦汉时期的《神农本草经》是中国最早的药用植物志。
现代植物学源于古希腊,创始人为亚里士多德的学生泰奧弗拉斯托斯,他发明并描述了许多现代植物学的原理。泰奧弗拉斯托斯的两部主要著作《植物史》和《植物本原》是欧洲古代和中世纪植物学的重要基础。公元1世纪希腊医师迪奥科里斯的著作《植物志》是一部共5卷的药草百科全书,对其后植物学亦有广泛影响。中世纪伊斯兰世界的植物学相关著作包括伊本·瓦希亚的《纳巴泰农业学》,阿布·哈尼法·迪纳瓦里的《植物之书》以及伊本·巴萨尔的《土壤分类》。13世纪早期,阿布·阿巴斯·纳巴蒂和伊本·拜塔尔以科学系统的风格撰写了植物学著作。
16世纪中期,意大利的大学中开始出现植物园。最早的植物园是于1545年创建的帕多瓦植物园,如今尚存于原址。这些植物园延续了先前修道院中“药材园”的用途,人们在园中种植可能具备药用价值的植物。植物园的建立支持了植物学的学科发展,在大学中常会举办园中相关植物的讲座。欧洲北部的植物学发展较慢,其最早的植物园是位于英国牛津大学的植物园。医师莱昂哈特·福克斯(1501–1566)、神学家奥托·布伦费尔斯(1489–1534)和医师希罗尼穆斯·博克(1498–1554)被并称为“德国植物学之父”。其中福克斯和博克一反重复早期书本内容的传统,转而自行观察研究植物,布伦费尔斯则是创建了植物分类系统。
瓦勒留斯·科尔杜斯(1515–1544)在其1544年作品《植物史》(拉丁語:Historia Plantarum)中记录了有重要药用价值的植物,并于1546年出版了《药典》(拉丁語:Dispensatorium)。博物学家康拉德·格斯纳(1516–1565)和药草师约翰·杰勒德(1545–c. 1611)也出版了各自的药用植物相关作品。博物学家乌利塞·阿尔德罗万迪被认为是“自然史之父”,他完成了许多植物研究工作。1665年,博学家罗伯特·胡克凭借显微镜在软木切片中发现了并命名了细胞,不久后亦在活体植物组织中发现了细胞。
早期现代植物学
现代植物学始于对植物的分类研究。18世纪,植物分类系统开始使用单道检索表对植物进行快速分类。在应用该方法时,科学家从预设的多种性状中选择与待分类植物最符合的性状,由此将其向下逐步归类为不同分类单元(例如科、属和种)。该方法的选择与顺序可以设计为只以分类为目的,或者也可以使其更加符合单道检索表(或称同步钥,英語:synoptic keys)的自然或分类顺序。在18世纪,得益于殖民地扩张,世界各地的新奇植物被采集回欧洲,这位植物学家的研究工作提供了诸多便利,他们无需到访世界各地便可研究许多异域植物。1753年,卡尔·林奈发表了植物分类学著作《植物种志》,该作品是现代植物学二名法的基础。根据林奈提出的植物命名方法,标准的植物学名应当由两个部分构成,第一部分是属名,第二部分标示属内的物种。为方便鉴定,林奈在其《性别系统》(拉丁語:Systema Sexuale)中依据植物的生殖器官不同,将它们归为24个群组。例如第24组隐花植物(Cryptogamia)包括所有生殖器官为隐藏形态的苔藓、地衣、蕨类、藻类和真菌。
随着植物解剖学和植物形态学的发展和对植物生命周期的认识,人们意识到植物间的亲缘不止是林奈在《性别系统》中所描述的那样。法国植物学家米歇尔·阿丹森(1763)、安托万·罗兰·德朱西厄(1789)以及瑞士植物学家奥古斯丁·彼拉姆斯·德堪多(1819)各自提出了影响广泛的植物分类系统。德堪多的分类系统中反映了他对于植物复杂形态发展过程的看法,对后续19世纪的边沁胡克体系有重要影响。1859年,达尔文出版的《物种起源》中有关共同起源的概念对德堪多体系提出了修正需求,需要从中反映出相似形态之间的演化关系。
1838年,德国植物学家馬蒂亞斯·施萊登发表了《植物发生论》(德語:Grundzüge der Wissenschaftlichen Botanik),此书对植物学有很大的影响。施萊登善用显微镜,并且是早期植物解剖学家。他与动物学家泰奥多尔·施万、医生鲁道夫·菲尔绍一同建立了细胞学说,并且在苏格兰植物学家罗伯特·布朗于1831年发现细胞核时随即意识到该结构的重要性。1855年,德国医生阿道夫·菲克提出了菲克定律,并将其用于计算生物系统中的分子扩散速率。
现代植物学
奥地利科学家格雷戈尔·孟德尔(1822–1884)借助对豌豆的实验研究,创立了基于基因和染色体的遗传学说。德国生物学家奥古斯特·魏斯曼(1834–1914)证明遗传只通过配子发生,而其它细胞都无法在真核生物的个体代际间传递遗传特征。凱瑟琳·伊索(1898–1997)在植物解剖学方面的工作为现代植物学奠定了重要基础,其半个世纪前的作品《植物解剖学与种子植物的解剖》(英語:Plant Anatomy and Anatomy of Seed Plants)至今仍被用作植物结构生物学教材。
丹麦植物学家尤金纽斯·瓦尔明于19世纪晚期创建了植物生态学,他提出植物以群落方式存在。瓦尔明的导师和继任者克里斯登·劳恩凯尔对此提出了至今仍在使用的劳恩凯尔植物生活型分类系统。美国植物学家亨利·钱德勒·考尔斯、英国植物学家阿瑟·坦斯利和美国植物生态学家弗雷德里克·克莱门茨发展了植物群落演替的概念,例如温带阔叶混交林的演替。克莱门茨还提出了顶级群落概念,它是对应环境所能支持的复杂程度最高的植物群。坦斯利将顶极群落的概念从生态学引入至生物学。19世纪德国植物学家卡尔·路德维希·韦尔登诺分析了种子散布与分布,植物种群,地质历史的影响之间的联系,并开创了植物地理学。俄国植物学家尼古拉·瓦维洛夫(1887–1943)在前人阿方斯·比拉姆·德康多尔的研究基础之上发展了生物地理学、起源中心和经济作物演化史的概念。
自1960年代以来,一些植物生理学原理逐渐被人们理解,例如蒸腾作用(水分在植物体内的移动),叶面水分蒸发速率与温度的依赖关系,水蒸气或二氧化碳透过气孔的分子扩散过程。借助这些研究成果以及对于植物气孔大小的精确测量,科学家得以准确的描述植物在光合作用过程中与大气的气体交换。洛桑研究所的罗纳德·艾尔默·费希尔与弗兰克·耶茨在统计分析方面的贡献简化了生物研究中的实验设计和数据分析。1948年,肯尼斯·诉蒂曼发现并鉴别出了植物生长素,允许人们透过外部化学方法控制植物的生长速率。弗雷德里克·坎皮恩·斯图尔德开创了植物激素控制的植物组织培养技术。2,4-二氯苯氧乙酸(或称2,4-D)是人类首次合成的除草剂。
进入20世纪后,有机化学技术的进步(例如光谱学、色谱法和电泳)引领了植物生物化学的发展。并且随着分子生物学、基因组学、蛋白质组学、代谢物组学等学科发展,科学家可以更详尽的用实验分析植物基因组与其生物化学、生理学、形态、行为之间的关系。1902年,奥地利植物学家戈特利布·哈伯兰特最先提出所有植物细胞都具备全能性,也即具备发育成完整植株的潜能。而这也允许科学家更加便利的将基因工程运用于植物细胞的体外培养。科学家可从目标植物中去除一个或多个与特定性状相关的基因片段,或加入报告基因(例如绿色荧光蛋白),以便于观察特定性状的表达。这些生物技术可修改完整植株或生物反应器内的植物细胞,使其分泌抗虫物质,生产抗生素或药物,此外也有相关技术用于提高作物产量。
现代植物形态学认识到植物的根、茎、叶、毛状体为连续的统一体,并强调这些结构的动态性。现代植物系统分类学主要关注植物间的系统发生关系。现代分子系统发生学通常忽视植物形态特征,而主要以植物的基因序列为数据来源。1998年,借助对开花植物的基因序列分析,被子植物种系发生学组发表了被子植物的系统发生学成果,其中回答了许多有关被子植物与其它物种之间的关系的问题。DNA条形码技术是当前植物学研究的活跃主题,该研究理论上可用于鉴定植物物种和商业品种。
近30多年来,分子生物学和近代技术科学,以及数学、物理学、化学的新概念和新技术被引入到植物学领域,植物学在微观和宏观层面的研究均取得了突破,无论在研究的深度还是广度上都达到了一个全新的水平。当今相当多的新知识都从研究模式植物而来,如拟南芥。这种十字花科的杂草是最早完成基因组测序的植物之一。此外水稻也是较早完成基因组测序的植物,因为水稻基因组相对较小,同时國際水稻基因定序工程(英語:The International Rice Genome Sequencing Project)也把它定为重要的谷物/草/单子叶植物模型。另一禾本科植物二穗短柄草也是一个有助理解遗传学,细胞学和分子生物学的实验模型。科学家对小麦、 玉米、 大麦、 黑麦、御谷、大豆等主粮都进行了基因组测序。其中部分植物的基因组测序较为困难,因为它们的染色体中有两个以上的单倍体。此外,绿色水藻莱茵衣藻作为模式生物,也为细胞生物学提供了重要知识。
研究范围与重要性
维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 植物学 的信息, 什么是 植物学?植物学 是什么意思?