扭棱立方体

幾何學中,扭棱立方體(英語:snub cube),又稱擬立方體(英語:cubus simus)是一種由38個面組成的阿基米德立體,由6個正方形和32個正三角形組成,共有60條邊和24個頂點。

扭棱立方体

(按這裡觀看旋轉模型)
類別半正多面體
對偶多面體五角二十四面體
識別
名稱扭棱立方体
參考索引U12, C24, W17
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
snic
數學表示法
考克斯特符號
英语Coxeter-Dynkin diagram
施萊夫利符號
sr{4,3}
威佐夫符號
英语Wythoff symbol
| 2 3 4
康威表示法sC
性質
38
60
頂點24
歐拉特徵數F=38, E=60, V=24 (χ=2)
組成與佈局
面的種類正三角形
正方形
面的佈局
英语Face configuration
(8+24)個{3}
6個{4}
頂點圖3.3.3.3.4
對稱性
對稱群O群
特性
對掌性
圖像

3.3.3.3.4
頂點圖

五角二十四面體
對偶多面體

展開圖

性質

扭棱立方體是一個手性多面體英语Chirality (mathematics),也就是說,該多面體鏡射之後會跟原本的型形狀不同,無法藉由旋轉半周再回到原本的形狀。扭棱立方體是一種阿基米德立體,其所有的面都是正多邊形,且每個頂點都是4個三角形和一個正方形,其頂點圖計為3.3.3.3.4或34.4,由於所有頂點相等,因此也稱為半正多面體

體積與表面積

邊長為單位長的扭棱立方體表面積體積為:

其中t表示三波那契常數英语tribonacci constant

由於扭棱立方體由6個正方形和32個正三角形組成,因此其表面積即6倍的正方形面積和32倍的正三角形面積

二面角

扭棱立方體有兩種不同角度二面角,分別是三角形-三角形二面角和三角形-正方形二面角。其中三角形-三角形二面角餘角的餘弦值是三次方程零點、三角形-正方形二面角餘角的餘弦值是六次方程零點

三角形-三角形二面角以反正割表示為:

換算成角度約為153.23度或153度14分04秒。

三角形-正方形二面角為:

換算成角度約為142.98度或142度59分00秒。

其中R為邊長為單位長之扭棱立方體外接球半徑

正交投影

扭棱立方體的正交投影
建立於 正三角形面 正方形面
圖像
投影對稱性 [3] [4]+ [2]
對偶圖像

球面鑲嵌


正方形為中心
正投影圖英语Orthographic projection 球極平面投影

幾何關聯

扭棱立方體可透過將立方體的正方形面向外拉,使之不再相連,然後再將正方形面旋轉一個角度,再將空隙以三角形補滿而得


扭棱立方體

立方體

小斜方截半立方體

扭棱立方體

相關多面體及鑲嵌

扭棱立方體是立方體經過扭棱變換後的結果,其他也是由立方體透過康威變換得到的多面體有:

對稱性英语List_of_spherical_symmetry_groups: [4,3], (*432)英语Octahedral symmetry [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)英语Tetrahedral symmetry
[3+,4]
(3*2)英语pyritohedral symmetry
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} c{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}

=

=

=
=
or
=
or
=





對偶多面體
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V4.62/63 V34.4 V33 V3.62 V35
扭稜立體
原像
正四面體

立方體

正八面體

正十二面體

正二十面體
扭稜
扭棱四面體
sr{3,3}
扭棱立方体
sr{4,3}
扭棱八面體
sr{3,4}
扭棱十二面体
sr{5,3}
扭棱二十面体
sr{3,5}
完全扭稜
完全扭稜四面體
β{3,3}

完全扭稜立方體
β{4,3}

二複合二十面體
β{3,4}

完全扭稜十二面體
β{5,3}

完全扭稜二十面體
β{3,5}

參見

外部連結

  • 埃里克·韦斯坦因, 扭棱立方体 (參閱阿基米德立體) 於MathWorld(英文)
  • 埃里克·韦斯坦因. Snub cubic graph. MathWorld. 

维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 扭棱立方体 的信息, 什么是 扭棱立方体?扭棱立方体 是什么意思?