半正多面體

半正多面體:
阿基米德立體, 稜柱, 和反稜柱

半正多面體是泛指所有由超過一種正多邊形所組成的多面體,並且要有對稱群,根據托羅爾德戈塞特的1900定義半正多面體有下面幾種:

  • 13種阿基米德立體.
  • 無限多種凸正稜柱.
  • 無限多種凸正反稜柱(他們的半正性質是开普勒首次觀察到)

半正多面體並非只包含阿基米德立體,它包含了所有由正多邊形組成且具有嚴格對稱的多面體,包含了正稜柱和正反稜柱

這些半正多面體可以完全由一種頂點配置來描述。例如:3.5.3.5,表示截半二十面體,即每個頂點周圍都有2個三角形和2個五邊形。而若頂點配置有些微差異就會變成另外一種半正多面體,像是3.3.3.5是一個五角反稜柱。這些多面體有時被描述為vertex-transitive。

從Gosset開始有其他作者使用術語“半正”,以不同的方式,描述更高維度的立體。E. L. Elte提供了一種被考克斯特認為過於太人為的定義。考克斯特自己冠以戈塞特的數據正圖形,但只有相當有限的子集分類為半正圖形

然而,其他人採取了不同的方式,來分類半正多面體。這些內容包括:

  • 三組符合戈塞特定義的星形多面體,類似於上面列出的凸多面體。
  • 上述多面體對偶多面體,由於他們具有相同的對稱性。這些多面體有:
    • 卡塔蘭立體
    • 凸雙錐體
    • 偏方面體
    • 其它的非凸類似物

進一步引起爭議的根源在於,阿基米德多面體的定義再次出現不同的解釋方式。

Gosset定義的半正多面體有更高的對稱性,正多面體和擬正多面體,後來的一些學者認為,這些都不是半正多面體,因為他們過於「正」了,並認為均勻多面體比較適合,這個命名系統的比較好,並協調許多(但絕不是全部)爭議。

维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 半正多面體 的信息, 什么是 半正多面體?半正多面體 是什么意思?