在数学中,有限布尔函数是如下形式的函数,这里的是布尔域,而 是非负整数。在 的情况下,函数简单的是 的一个恒定元素。
更一般的说,形如 函数,这里的 是任意集合,是布尔值函数。如果,则 是“二进制序列”,就是说0和1的无限序列。如果,则 是长度为 的“二进制序列”
有个这种函数。
布尔函数可以唯一的写为积(AND)之和(XOR)。这叫做代数范式(ANF),也叫做Zhegalkin多项式。
| | |
| | |
| | |
| | |
| | |
这里的。 序列的值因此还唯一的表示一个布尔函数。
布尔函数的代数次数被定义为出现在乘积项中的 的最高次数。所以有次数1(线性),而有次数3(立方)。
对于每个函数都有一个唯一的ANF。只有四个函数有一个参数: , , , ;它们都可以在ANF中给出。要表示有多个参数的函数,可以使用如下等式:
- ,
这里的 并且 。
实际上,
- 如果 ,则 ,并因此 ;
- 如果 ,则 ,并因此 。
因为和二者都有比少的参数,可以得出递归的使用这个过程将完成于只有一个变量的函数。
例如,让我们构造一个(逻辑或)的ANF:
- ;
- 因为 并且,可以得出;
- 通过打开括号我们得到最终的ANF: 。
维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 布尔函数 的信息, 什么是 布尔函数?布尔函数 是什么意思?