值域

数学中,函数的值域(英語:Range)是由定义域中一切元素所能產生的所有函數值的集合。有时候也称为函数的像。

给定函数,集合被称为是值域,记为。值域不应跟陪域相混淆。一般来说,值域只是陪域的一个子集

例子

假设函数为定义在实数上的函数:

定义为

的陪域为,但明顯地不會取到负数值,因此,事实上值域只是非负实数集合,即区间

求法

基本方法

初等函数的值域求法一般为:

  1. 观察法
  2. 不等式法
  3. 反函数法
  4. 复合函数法
  5. 配方法
  6. 判别式法
  7. 图像求值

观察法

例如:

所以值域为

不等式法

反函数法

先求得所要计算的函数的反函数,则反函数的定义域即为原函数的值域。

例如:

它的反函数为

反函数的定义域为:

则原函数的值域为:

复合函数法

配方法

判别式法

图像求值

画出連續函数的图像,则函数图像纵轴的最小值和最大值(若有)组成的区间即为函数的值域。

相关条目

  • 陪域
  • 定义域
  • 单射
  • 满射
  • 双射

维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 值域 的信息, 什么是 值域?值域 是什么意思?