五複合立方體

幾何學中,五複合立方體,是一種由五個立方體組合成的複合多面體,其索引編號為UC9,是唯一五種正複合體之一,亦是一種星形多面體。埃德蒙·赫斯在1876年首先描述了該幾何結構。

五複合立方體
五複合立方體,每個立方體以不同顏色表示
類別複合正多面體
星形菱形三十面體
對偶多面體五複合正八面體
識別
名稱五複合立方體
參考索引UC5
數學表示法
考克斯特符號
英语Coxeter-Dynkin diagram
2{5,3}[5{4,3}]
性質
5
30
60
頂點20
歐拉特徵數F=30, E=60, V=20 (χ=-10)
組成與佈局
複合幾何體數量5
複合幾何體種類5個立方體
面的種類30個正方形
對稱性
對稱群二十面體群 (Ih)
圖像
星狀圖英语Stellation_diagram 星狀英语Stellation 凸包
正二十面體 正十二面體

五複合立方體的對偶多面體五複合正八面體

構造

擁有二十面體對稱五複合立方體可以由以原點為中心、面向軸的第一個立方體開始構造,其餘的立方體則透過軸旋轉弧度來構造,畢依這加入順序決定角度值中的n,例如第二個立方體n=1、第三個立方體n=2以此類推。

性質

五複合立方體為五個立方體組合成的形狀,因此其邊、面和頂點的數量基本上應該會是立方體的5倍,但因為部分頂點是重合的,因此其僅有30個面、60條邊和20個頂點。

五複合立方體中可以找到菱形三十面體中的30個菱形。

結構

五複合立方體可以視為正十二面體刻面英语faceting後的多面體,在正十二面體凸包中每個立方體定位在12個頂點中的其中8個頂點。


頂點座標

由於五複合立方體可以看作是在正十二面體中嵌入立方體,因此其頂點座標與正十二面體相同:

(±1, ±1, ±1)
(0, ±1/ϕ, ±ϕ)
1/ϕ, ±ϕ, 0)
ϕ, 0, ±1/ϕ)

其中ϕ = 1 + 5/2為黃金比例。

作為星形多面體

五複合立方體可以看作是一種菱形三十面體的星形多面體,即星形菱形三十面體

星狀圖英语Stellation diagram 星形 星狀核 凸包

菱形三十面體

正十二面體

稜排佈

五複合立方體的凸包是正十二面體。其與一些凸包也是正十二面體的多面體有著相同的稜排佈,例如小雙三斜三十二面體、大雙三斜三十二面體和雙三斜十二面體。

a{5,3} a{5/2,3} b{5,5/2}
= =

小雙三斜三十二面體

大雙三斜三十二面體

雙三斜十二面體

正十二面體 (凸包)

五複合立方體

球面的五複合立方體

其他的五個立方體複合圖形

亦有其他也由五個立方體組合成的形狀,例如佛達里也斯的五複合立方體。這種形狀是一個八面體對稱的星形多面體

外部連結

  • 埃里克·韦斯坦因. 五複合立方體. MathWorld. 
  • Hart, G. 五複合立方體的VRML模型:依立方體上色(页面存档备份,存于互联网档案馆)、一種顏色(页面存档备份,存于互联网档案馆

维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 五複合立方體 的信息, 什么是 五複合立方體?五複合立方體 是什么意思?