在數學中,二面體群 是正 邊形的對稱群,具有 個元素。某些書上則記為 。除了 的情形外, 都是非交換群。
| 群论 |
|---|
|
|
| 群 |
| 基本概念 |
|---|
子群 · 正规子群 · 商群 · 群同態 · 像 · (半)直积 · 直和 单群 · 有限群 · 无限群 · 拓扑群 · 群概形 · 循環群 · 冪零群 · 可解群 · 圈積 |
| 离散群 |
|---|
有限單群分類 循環群 Zn 交错群 An 李型群 散在群 马蒂厄群 M11..12,M22..24 康威群 Co1..3 扬科群 J1..4 费歇尔群F22..24 子魔群 B 魔群 M
其他有限群 对称群, Sn 二面体群, Dn 无限群 整数, Z 模群, PSL(2,Z) 和 SL(2,Z)
|
| 无限维群 |
|---|
共形群 微分同胚群
环路群 量子群 O(∞) SU(∞) Sp(∞)
|
|
| |
生成元與關係
抽象言之,首先考慮 階循環群 。反射 是 上的自同構,而且 。定義二面體群為半直積
任取 的生成元 , 由 生成,其間的關係是
的元素均可唯一地表成 ,其中 ,。
幾何詮釋
二面體群也可以詮釋為二維正交群 中由
- (旋轉 弧度)
- (對 x 軸反射)
生成的子群。由此不難看出 是正 n 邊形的對稱群。
性質
- 的中心在 為奇數時是 ,在 為偶數時是 。
- 當 為奇數時, 同構於 與二階循環群的直積。同構可由下式給出:
其中 ,。
- 當 為奇數時, 的所有反射(即:二階元素)彼此共軛;當 為偶數,則反射元在共軛作用下分解成兩個軌道;從幾何方面解釋,二者差意在於反射面是否通過正 邊形的頂點。
- 若 ,則 ,由此可導出 共有 個子群,其中的算術函數 與 分別代表 的正因數個數與正因數之和。
表示
當 為奇數時, 有兩個一維不可約表示:
當 為偶數時, 有四個一維不可約表示:
正八邊形的停車標誌在
的
群作用下的結果