| 各种各样的数 |
| 基本 |
| | 正數 自然数 正整數 小数 有限小数 无限小数 循环小数 有理数 代數數 实数 複數 高斯整數
| 负数 整数 负整數 分數 單位分數 二进分数 規矩數 無理數 超越數 虚数 二次無理數 艾森斯坦整数
|
|
| 延伸 |
| 二元数 四元數 八元数 十六元數 超實數 大實數 上超實數
| 雙曲複數 雙複數 複四元數 共四元數 超复数 超數 超現實數
|
|
| 其他 |
| 質數 可計算數 基數 阿列夫數 同餘 整數數列 公稱值
| 規矩數 可定义数 序数 超限数 p進數 数学常数
|
圓周率 … 自然對數的底 … 虛數單位 無限大 |
| |
數論上,二次無理數(quadratic irrational)是某些有理數係數的一元二次方程的根。若將所有係數乘以分母的最小公倍數,即可將係數轉換為整數。因此所有二次無理數都可以表示成
其中
- 為整數,
- 是無平方數因數的數
- 不為零。
若c為正數,所得的是實二次無理數,若c為負數,所得的是複二次無理數。二次無理數是可數集。
1770年,拉格朗日證明一個數字能表示成循環連分數,若且唯若此數為實二次無理數。例如。
外部連結
- 計算二次無理數的連分數形式(页面存档备份,存于互联网档案馆)
文內注釋
- Kenneth H. Rosen. Elementary Number Theory and Its Applications.
维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 二次無理數 的信息, 什么是 二次無理數?二次無理數 是什么意思?