土星環

土星環太陽系行星的行星環中最突出與明顯的一個,環中有不計其數的小顆粒,其大小從微米到米都有,軌道成叢集的繞著土星運轉。環中的顆粒主要成分都是冰,還有一些其它的化學物質。

雖然環的反射能夠增加土星的視星等(亮度),但從地球僅憑肉眼還是看不見環。1610年,當望遠鏡第一次指向天空之際,伽利略雖然未能清楚的看出環的本質,但他還是成為觀察土星環的第一個人。1655年,惠更斯成為第一個描述環是環繞土星的盤狀物的人。

雖然許多人都認為土星環是由許多微細的小環累積而成的(這個觀念可以回溯至拉普拉斯),並有少數真實的空隙。更正確的想法是這些環是有著同心但是在密度和亮度上有著極值的圓環盤。在叢集的尺度上,圓環之間有許多空洞的空間。

在環的中間有一些空隙:有兩條已經知道是與被埋藏在環中的衛星產生軌道共振引起的波動造成的,其它的空隙還不知道成因。穩定的共振,另一方面,也維繫了一些環長期的存在,像是泰坦環

歷史

早期觀察

伽利略是第一位在1610年使用望遠鏡看見土星環的人,但是他未能辨認出是環。他在寫給科西莫二世·德·麥地奇的信上說到:

他也把土星說成是有「耳朵」的。1612年,土星環以側面朝向地球,因此看起來似乎是消失不見了,伽利略因此而感到困惑不解,「是土星吞掉了它的孩子?」(參見希臘神話,神祇為了防止他們的子孫造反奪權,會吃掉自己的孩子)然後1613年他又再看見了環,這使伽利略更加困惑。

1655年,克里斯蒂安·惠更斯觀測到完整的土星環,他使用了一个比在伽利略时代能得到强大得多的望远镜。惠更斯觀測土星並寫道:「土星,它被一個薄且平坦的環環繞著,什麼地方都沒有接觸到,並且對黃道傾斜著。」但土星有環的說法直到1665年才被天文學家所接受。

1675年,乔瓦尼·卡西尼確定土星環由許多較小的環組成,中間並且有縫存在著,其中最明顯的環縫在不久之後被命名為卡西尼縫。卡西尼縫存在於A環B環之間,寬度有4800公里。

1787年,皮埃爾-西蒙·拉普拉斯認為這些環是由為數眾多的固體小環組成的。

1859年,詹姆斯·克拉克·麦克斯韦證明土星環不可能是固體的,若是固體將會因為不穩定而碎裂。他認為環是由為數眾多的小顆粒組成的,每個都獨立的環繞著土星。透過光譜學的研究,立克天文台的詹姆斯·基勒在1895年證實了馬克士威的學說。

惠更斯環理論和後來的發展

土星的軸向傾角

物理特性

使用現代的小望遠鏡或是品質精良的雙筒望遠鏡就可以看見土星環。密集的主要環帶從赤道上方7 000 公里延伸至80 000 公里,但估計它的厚度只有10米,並且99.9%都是冰,也許還參雜著少許的雜質,像是有機化合物托林或矽酸鹽。主要環帶中的顆粒大小範圍從1公分至10米都有。

環中最大的縫隙,像是卡西尼縫和恩克環縫,都能從地球上看見,兩艘航海家太空船都發現環實際上是由數以萬計稀薄的小環和空隙構成的複雜結構體。有許多方法可以造成這些結構,來自土星眾多衛星的引力拉扯也可以。有些縫隙是微小的衛星經過所清除的段落,像是潘,可能還有許多尚未發現的,也有些環被一些牧羊犬衛星的重力維繫著(像是普羅米修斯和潘朵拉維護著的F-環。)。其他的縫隙可能是與質量較大的衛星軌道週期產生共振造成的,米馬斯維繫著卡西尼縫的存在,還有更多的環狀結構因為受到其他衛星週期性的擾動而產生螺旋狀的波浪。

來自卡西尼太空船的資料顯示土星環有自己的大氣層,與行星本身無關而獨立存在。大氣中有分子(O2),這是來自太陽的紫外線與環中的冰交互作用而產生的。水分子之間的鏈結受到紫外線的刺激產生化學作用釋放出並拋出了氣體,尤其是O2。根據這些大氣的模型,也有H2,O2和H2的大氣層是很稀薄的,但莫名其妙的被凝聚在環的周圍,它的厚度只是一個原子。環中也有稀疏的OH(氧化氫)氣體,如同O2一樣,這些氣體也是水分子的崩解導致的,經由轟擊將水分子崩解的高能量離子是由恩塞拉都斯拋射出來的。這些大氣層儘管是非常的稀薄,還是被在地球上空的哈伯太空望遠鏡檢測出來。

土星在它的亮度上呈現複雜的樣式,大多的光度變化可以歸咎於環的變化,並且在每個軌道週期有兩個循環的變化。但是,由於行星軌道的離心率,使得疊加在北半球衝的時候比在南半球衝時更為明亮。

1980年,航海家1號飛越土星時顯示F-環是由三條細環像編辮子一樣的糾結在一起,而呈現出複雜的結構;現在知道是在外面的二個環有突起的瘤,造成編織和糾結成團的幻覺,比較不亮的第三個環則在它們的內側。

主環的形成與演化

土星環可能非常古老,日期可以追溯至土星本身的形成,有兩種主要的土星環形成理論。第一種理論是在19世紀提出的起源於洛希極限,認為環原本是土星的一顆衛星,因為軌道的衰減而落入洛希極限的範圍內,因不夠緊密而被潮汐力扯碎掉(參見洛希極限);這種理論又演變出衛星被小行星或彗星撞擊而瓦解的學說,以及從這種理論延伸的變化是衛星被一顆大的彗星或小行星碰撞而瓦解。第二種理論認為環從未曾是衛星的一部分,而是從形成土星的原星雲中直接形成的。

土星環
和衛星
土衛三特提斯、土衛七海柏利昂和土衛十六普羅米修斯
土衛三特提斯和土衛十雅努斯

傳統的看法認為,它可能是由一顆比土衛一彌瑪斯大、直徑大約300公里的衛星殘骸組成的。這種碰撞最可能發生在大約40億年前的後期重轟炸期。

其星環的冰屑亮度和純淨程度被引用為認定土星環比土星年輕許多的證據,可能相差了一億年,因為下降的塵土會導致環的亮度降低。但是新的研究顯示B環所擁有的質量足以稀釋下落的物質,因此可以避免因為太陽系的年齡造成實質上的光度變暗。環內的物質也許在碰撞中被瓦解後還能夠回收再利用,這或許可以用來解釋有些環中的物質明顯的仍然處在很年輕的狀態。

拉里·W·艾斯波西英语Larry W. Esposito多領導的卡西尼UVIS團隊,利用掩星技術在F環內發現了13個直徑從27米至10公里的天體。它們都是半透明的,因此認為它們是由直徑數米的冰礫暫時聚集起來的。 艾斯波席托相信這是土星環的基本結構體,微粒聚集在一起,然後又因撞擊而炸開來。

在土星磁场影响下,土星环上的物质以光环雨的形式掉落到土星,预计土星环将在一亿年内完全消失。

環內的細部和結構

土星環最密集的範圍是被卡西尼縫(在1675年被卡西尼發現)分隔的A環和B環,以及性质上愈卡西尼缝相似,在1850年發現的C環,這些構成了主環。主環是密集和包含比細小的塵埃環更大的顆粒,後者包含了向內一直延伸至土星雲頂的D環,以及在主環系統外面的G和E環。"塵埃"這個字眼是用來描述散佈在環內的小型微粒(通常只有微米的大小);它們的化學組成像主環一樣,幾乎完全都是碎冰。狹窄的F環,就在A環外側的邊緣,很難分類,它的分布非常密集,但也包含很多塵埃大小的顆粒。

由卡西尼號的小角度攝影機拍攝的影像以自然的顏色馬賽克而成,由左至右依序為不受光側的D、C、B、A和F環,日期為2007年5月9日。

環的主要細節

名稱(3) 與土星的距離
(至中心,單位為公里)(4)
寬度(公里)(4) 命名依據
D環 66,900~74,510 7,500  
C環 74,658~92,000 17,500  
B環 92,000~117,580 25,500  
卡西尼縫 117,580~122,170 4,700 喬瓦尼·多梅尼科·卡西尼
A環 122,170~136,775 14,600  
洛希環縫 136,775~139,380 2,600 愛德華·洛希
F環 140,180 (1) 30~500  
雅努斯/艾皮米修斯環(2) 149,000~154,000 5,000 土衛十雅努斯和土衛十一艾比米修斯
G環 166,000~175,000 9,000  
墨托涅環弧 (2) 194,230 土衛三十二墨托涅
安忒環弧 (2) 197,665 土衛四十九安忒
帕勒涅環 (2) 211,000~213,500 2,500 土衛三十三帕勒涅
E環 180,000~480,000 300,000  
佛碧環 ~4,000,000~>13,000,000 土衛九佛碧

C環內的結構

名稱(3) 與土星中心的距離(公里)(4) 寬度(公里)(4) 命名依據
可倫坡縫 77,870 (1) 150 朱塞佩·可倫坡
泰坦小環 77,870 (1) 25 土衛六泰坦
馬克士威縫 87,491 (1) 270 詹姆士·克拉克·馬克士威
馬克士威小環 87,491 (1) 64 詹姆士·克拉克·馬克士威
邦德縫 88,700 (1) 30 威廉·邦德和喬治·菲利普斯·邦德
1.470半徑小環 88,716 (1) 16 它的半徑
1.475半徑小環 90,171 (1) 62 它的半徑
道斯縫 90,210 (1) 20 威廉·魯特·道斯英语William Rutter Dawes

卡西尼縫的結構

名稱(3) 與土星中心的距離(公里)(4) 寬度(公里)(4) 命名依據
惠更斯縫 117,680 (1) 285~400 克里斯蒂安·惠更斯
惠更斯小環 117,848 (1) ~17 克里斯蒂安·惠更斯
赫雪爾縫 118,234 (1) 102 威廉·赫雪爾
羅素縫 118,614 (1) 33 亨利·諾利斯·羅素
傑弗里斯縫 118,950 (1) 38 哈羅德·傑弗里斯
古柏縫 119,405 (1) 3 傑拉德·古柏
拉普拉斯縫 119,967 (1) 238 皮耶-西蒙·拉普拉斯
貝塞爾縫 120,241 (1) 10 弗里德里希·威廉·貝塞爾
巴納德縫 120,312 (1) 10 愛德華·愛默生·巴納德

A環內的結構

名稱(3) 與土星中心的距離(公里)(4) 寬度(公里)(4) 命名依據
恩克環縫 133,589 (1) 325 约翰·弗朗茨·恩克
凱勒環縫 136,505 (1) 35 詹姆士·愛德華·凱勒

注:
(1) 距離是量至環縫的中心,環和小環的區別在環的寬度是否小於1,000公里
(2) 非官方的名稱
(3) 除非另有說明,名稱是由國際天文學聯合會指定的。在圓環之間更加寬廣的分離會被命名為裂縫,在環之間狹窄的空隙稱為縫'
(4)資料主要來自 Gazetteer of Planetary Nomenclature(页面存档备份,存于互联网档案馆) 和 NASA factsheet(页面存档备份,存于互联网档案馆).

傾斜的(4度角)卡西尼號的影像,由左至右依序為土星的C、B和A環,F環在上圖以完整尺寸檢視且螢幕亮度足夠時隱約可見。上圖:由卡西尼號的小角度攝影機以自然的顏色拍攝受光面的環,並拼接而成的影像,拍攝的時間是2004年12月12日。下圖:基於在2005年5月3日無線電掩星的觀測的模擬圖像,顏色為環中顆粒的大小。

D環

D環是最內側的環,並且非常暗弱。在1980年,航海家1號偵測到在其中有個小環,分別標示為D73、D72和D68是最靠近土星並被分離出的小環。25年之後,卡西尼影像顯示D72明顯的變得更為微弱並且朝向土星移動了200公里。出現在C環和D73之間的縫隙是分離30公里波長的精細尺度結構。

C環

C環是在B環內側很寬闊但暗淡的環,它在1850年被威廉和喬治·邦德發現的,可是威廉·R. 道斯和約翰·伽勒也獨立看到。威廉·拉塞爾因為它比明亮的A環和B環黯淡而稱他為"黑紗環"。

估計他的垂直厚度只有5米,質量大約是1.1 × 1018公斤,光深度在0.05至0.12之間變化。也就是說垂直通過環的光只有5%至12%會被圓環阻攔,因此從上或下看環時,它幾乎是透明的。

可倫坡縫和泰坦小環

可倫坡縫在C環靠內側的位置,縫隙中有著明亮和很窄的可倫坡小環,中心距離土星的中心77 883公里,這個環有些微的橢圓形而不是正圓。這個小環因為受到土衛六泰坦軌道共振的約束,有時也被稱為泰坦小環。在環的這個位置上,環上質點拱點進動的週期與土衛六泰坦的軌道周期剛好相同,因此這個偏心小環最外面的尾端總是指向著土衛六泰坦。

馬克士威縫

馬克士威縫在C環靠外側的位置,它也擁有一個密集但不圓的馬克士威小環。在許多細節上這個小環與天王星的ε環相似。在這兩個環中間都有像波狀的結構,在天王星ε環的波是由卡多利亞造成的,但迄2008年7月仍未在馬克士威縫內或附近發現衛星。

B環

B環是所有環中最大、最亮與質量最多的。它的厚度估計在5~15米,質量在2.8 × 1019公斤,光深度的變化在0.4至2.5之間,意味著通過B環的光線有將近99%會被阻攔。B環在密度和光度上的許多變化,幾乎都還沒有獲得合理的解釋。B環都是同心圓,雖然其中有許多狹窄的小環,但B環不包含任何的縫隙。

中央 B 環(距土星中心 98,600 至 105,500 公里)的高分辨率(每像素約 3 公里)彩色視圖。 所示結構(從中心 40 公里寬的小環到右側 300-500 公里寬的波段)在低於圖像分辨率的尺度上仍然清晰可見。
B 環的外緣,在春分附近觀察,那裡的陰影由高達 2.5 公里的垂直結構投射,可能是由看不見的嵌入衛星造成的。 卡西尼分部位居榜首。

维基百科, wiki, wikipedia, 百科全书, 书籍, 图书馆, 文章, 阅读, 免费下载, 关于 土星環 的信息, 什么是 土星環?土星環 是什么意思?